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Abstract
A recently developed wavelet based approach is employed to characterize the
scaling behaviour of spectral fluctuations of random matrix ensembles, as well
as complex atomic systems. Our study clearly reveals anti-persistent behaviour
and supports the Fourier power spectral analysis. It also finds evidence for
multi-fractal nature in the atomic spectra. The multi-resolution and localization
nature of the discrete wavelets ideally characterizes the fluctuations in these
time series, some of which are not stationary.

PACS numbers: 05.40.−a, 05.45.Mt, 05.45.Tp, 32.30.−r

Recently, a fundamentally different approach to the study of random matrix ensembles has
been taken [1–4]. The cumulative of the unfolded spectra for a variety of ensembles has
been treated as a time series, on which a Fourier spectral analysis has been carried out. Very
interestingly, this reveals a ubiquitous 1/f power law behaviour in the Fourier domain, which
has been taken as the defining characteristic of these random matrix ensembles. In this context,
a number of tools, earlier employed for the analysis of various time series showing self-similar
behaviour, can be used for the characterization of the above data. The well-known methods
such as rescaled range analysis [5] and the structure function method [6] have been found to
be wanting, when applied to non-stationary time series. Wavelet transform modulus maxima
[7–9] is a continuous wavelet based method which is quite powerful in extracting fractal
behaviour. Recently, we have developed a discrete Daubechies wavelets [10] based approach
[11, 12], which is well suited to remove local trends in any time series and faithfully
characterize the fluctuations. It is complimentary to the well-studied multi-fractal detrended
fluctuation analysis (MFDFA) [13–18], which uses appropriate polynomial fits in local
windows for extracting fluctuations. It is worth mentioning that the multi-resolution ability of
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the wavelets naturally makes them ideal for the analysis of time series showing self-similar
behaviour [19].

This letter studies the scaling and correlation behaviour and multi-scaling properties of
energy fluctuations in random matrix ensembles and atomic systems. The primary motivation
for this comes from the aforementioned Fourier spectral analysis, which is known to yield the
Hurst exponent H, with α = 2H + 1, α being the exponent of the power law decay. Since H is
related to the second moment, it is quite natural to ask the nature of the higher moments, which
determine the multi-fractal characteristic of the time series. For this purpose, we make use
of a discrete wavelet based approach developed by us earlier [11, 12]. In this approach, after
removal of the local trend over a given window, the fluctuations are extracted. The wavelets
naturally provide a number of windows of different sizes to extract fluctuations at various
scales. Using these, the fluctuation function [20] is then calculated, which yields the mono
or multi-fractal nature of the time series, when studied in a log–log plot. We further test the
self-similar behaviour of the above time series through MFDFA for completeness. Our results
on Hurst exponent matches with Fourier spectral analysis.

It is found that certain atomic systems exhibit multi-fractal behaviour. It is observed
that removing the eigenvalues of the localized states, which are quantum analogue of classical
unstable orbits, from the energy level data does not alter the nature of the self-similar behaviour,
although it affects the Hurst exponent value. The identification and quantification of localized
states are discussed in [21]. Study of multi-fractal behaviour has been carried out earlier in
the context of various atoms and ions. Methods like, box-counting [22] and correlation sum
have been employed [23, 24]. Keeping in mind the possible non-stationary nature of the data,
as well as efficacy of the wavelet based approach for extracting fluctuations, we have used the
same here for studying the self-similar nature of the fluctuations.

We give a brief description of the wavelets before proceeding to the analysis of time series
related to various random matrix ensembles [25] and atomic level data [26]. Results and
discussions pertaining to the above analysis are then presented. One observes mono-fractal
behaviour for the time series associated with random matrix ensembles. Two atomic energy
level time series show multi-fractal behaviour and another reveals mono-fractal character. We
summarize and conclude in the final section, after pointing out several directions for future
work.

The discrete wavelets provide complete and orthonormal basis functions, starting from
the father wavelet φ(t) (scaling function) and mother wavelet ψ(t) [8, 10, 21, 27]. These
functions necessarily satisfy

∫
φ(t) dt = A and

∫
ψ(t) dt = 0, where A is a constant. Scaling

and translation of wavelets lead to ψj,k = 2j/2ψ(2j t − k), which obey the orthogonality
conditions: 〈φj,k|ψj,k〉 = 0 and 〈ψj,k|ψj ′,k〉 = δj,j ′δk,k′ . Any signal belonging to L2 can be
written in the form

f (t) =
∞∑

k=−∞
ckφk(t) +

∞∑
k=−∞

∞∑
j=0

dj,kψj,k(t), (1)

where c′
ks are the low-pass coefficients and d ′

j,ks are the high-pass coefficients. The Daubechies
family of wavelets are made to satisfy vanishing moment conditions:

∫
dt tmψj,k(t) = 0. This

makes them ideal to isolate polynomial trends from fluctuations. We make use of the discrete
wavelets from Daubechies family for our analysis of energy level fluctuations.

Consider Ei, i = 1, 2, 3, . . . , n + 1, the discrete energy levels of random matrix
ensembles or atomic systems, represented as a discrete time series in the form Ei as shown in
figures 1 and 2. The trend and fluctuations from the integrated level density are separated by
the higher order polynomial fitting: N(E) = Nt(E) + Nf (E). The unfolded energy spectra
Ēi is obtained through the transformation Nt(Ei) = Ēi . The fluctuations of the energy level
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Figure 1. Time series of extracted fluctuations from the unfolded energy spectra of (a) Pm,
(b) Nd, (c) Sm and (d) Sm with localized levels removed.
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Figure 2. Time series of extracted fluctuations from the unfolded energy spectra of random matrix
ensembles (a) GDE, (b) GSE, (c) GOE and (d) GUE.
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spacings are ei = Ēi+1 − Ēi, i = 1, 2, 3, . . . , n, where 〈ei〉 = 1. The time series of energy
level fluctuations is given by

δm =
m∑

i=1

(ei − 〈ei〉), m = 1, . . . , n. (2)

The power spectrum of the times series δm is calculated for various random matrix
ensembles and atomic energy levels of Nd, Pm and Sm. It should be noted that, these have 60,
61 and 62 electrons, respectively. The corresponding number of active valence electrons are
6, 7 and 8; the complexity increases as the number of active valence electrons increases. The
random matrix ensembles studied are Gaussian orthogonal ensemble (GOE), Gaussian unitary
ensemble (GUE), Gaussian diagonal ensemble (GDE) and Gaussian symplectic ensemble
(GSE). The cumulative of the unfolded time series is shown in figures 1 and 2, for the atomic
systems and random matrix ensembles, respectively. Regarding the details of the atomic
system, interested readers are referred to [26].

Fourier spectral analysis of all the data sets yields S(k) ≈ 1
kα , with α ∼ 1. This is in

agreement with the results of Relaño et al which found that the energy spectra of quantum
systems exhibiting classical chaos are characterized by 1/f behaviour. We carried out the
spectral analysis using fast Fourier transform [28], and ensemble averaging was employed in
finding the exact slope α.

We now proceed to the study of the scaling properties of these time series through
wavelet based fluctuation analysis. We make use of wavelets from Daubechies family for
characterization, since these naturally remove polynomial trends from data sets. The fractal
nature of the time series is revealed through the study of the fluctuation function. In discrete
wavelet transform it is well known that, a given signal belonging to L2 space can be represented
in a nested vector space spanned by the scaling functions alone. This basic requirement of
multi-resolution analysis can be formally written as [27]

· · · ⊂ ν−2 ⊂ ν−1 ⊂ ν−0 ⊂ ν1 ⊂ ν2 · · · ⊂ L2, (3)

with ν−∞ = 0 and ν∞ = L2. This provides a successive approximation of a given signal
in terms of low-pass or approximation coefficients. It is clear that, the space that contains
high-resolution signals will also contain signals of lower resolution. The signal or time series
can be approximated at a level of one’s choice for use in finding the local trend over a desired
window. The fluctuations can then be obtained by subtracting the above trend from the
signal. We have followed this approach for extracting the fluctuations, by elimination of local
polynomial trends through the Daubechies wavelets. We compute the fluctuation function in
order to ascertain the self-similar nature of the time series. The qth order fluctuation function,
Fq(s) is obtained by squaring and averaging fluctuations over all segments:

Fq(s) ≡
{

1

2Ms

2Ms∑
b=1

[F 2(b, s)]q/2

}1/q

. (4)

Here ‘q’ is the order of moments that takes any real values. The above procedure is
repeated for variable window sizes for different values of q (except q = 0). The scaling
behaviour is obtained by analysing the fluctuation function,

Fq(s) ∼ sh(q), (5)

in a logarithmic scale for each value of q. If the order q = 0 logarithmic averaging has to be
employed to find the fluctuation function

F0(s) ≡ exp

{
1

4Ms

2Ms∑
b=1

ln[F 2(b, s)]

}
. (6)
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Table 1. The h(q) values for different values of q obtained from wavelet based fluctuation analysis.
Here h(q = 2) = H is the Hurst scaling exponent.

q GDE GSE GOE GUE Pm Nd Sm Smd

−4 1.5189 1.0971 0.9797 1.0403 1.3893 1.5071 1.2055 0.9202
−3 1.5155 1.0890 0.9793 1.0353 1.3903 1.5042 1.2107 0.9197
−2 1.5130 1.0808 0.9798 1.0307 1.3938 1.5021 1.2154 0.9213
−1 1.5103 1.0726 0.9811 1.0264 1.3999 1.5010 1.2192 0.9252

0 1.5056 1.0644 0.9830 1.0222 1.4080 1.5006 1.2215 0.9307
1 1.4980 1.0563 0.9852 1.0183 1.4159 1.4987 1.2219 0.9365
2 1.4878 1.0481 0.9872 1.0145 1.4165 1.4916 1.2202 0.9409
3 1.4759 1.0401 0.9888 1.0108 1.3983 1.4759 1.2163 0.9436
4 1.4632 1.0321 0.9894 1.0073 1.3621 1.4533 1.2104 0.9449

As is well known, if the time series is mono-fractal, the h(q) values are independent
of q. For multi-fractal time series, h(q) values depend on q. The correlation behaviour is
characterized from the Hurst exponent (H = h(q = 2)), which varies from 0 < H < 1.
For long range correlation, H > 0.5,H = 0.5 for uncorrelated and H < 0.5 for long range
anti-correlated time series. We refer the interested readers to [11, 12] for the details of this
approach. The power law manifests itself as a straight line in the log–log plot of Fq(s) versus
s for each value of q:

Fq(s) ∼ sh(q). (7)

For mono-fractal time series, h(q) is constant for all q, whereas for multi-fractal time series
h(q) shows nonlinear dependence for all q. Here q varies from −4 to +4. We have used
Db-8 wavelet for capturing fluctuations. The well-known Hurst exponent H equals to h(q = 2),
which is related to the power spectral analysis by the relation α = 2H + 1. Since the values
of the fluctuations are very small, in order to study the same, we integrated the time series by
subtracting mean. Through this double integrated time series, the obtained Hurst exponent is
H1 = H + 1.

The Hurst exponent calculated from Fourier analysis compares well with the wavelet
based fluctuation analysis for correlation behaviour. We have also corroborated our results
through MFDFA.

The self-similar behaviour of a variety of random matrix ensembles and atomic level
data have been explored through both discrete wavelets and MFDFA. The scaling behaviour
corroborates the findings of Fourier analysis. We found mono-fractal behaviour for random
matrix ensemble time series for which computed Hurst exponents agreed with the results of
Relano et al. Very interestingly, for one atomic level data, we observed multi-fractal behaviour
for Pm and Nd systems. Sm showed scaling behaviour. It should be mentioned that, keeping in
mind the rather small data length, we have computed the moments from q = −4 to q = 4. One
sees a clear tendency of mono and multi-fractal behaviour, although it is not very dramatic.
Removal of the eigenvalues of the localized states made the Sm system mono-fractal with
strong persistence. These results are shown in table 1. In the last column Smd represents the
atomic level data for Sm when the eigenvalues of the localized states have been removed. It is
worth noting that, among the three atoms, Sm has the strongest configuration mixing as it has
the largest number of active valence electrons. This indicates that the lack of sufficient mixing
and effect of localized levels may influence the multi-fractal nature of the atomic systems.

We intend to study these aspects carefully in future. The nature of correlations in other
ensembles which appear in various physical problems also needs investigations. These include
embedded random matrix ensembles relevant for finite interacting particle systems [29].
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